Exercise 20

Solve the differential equation using (a) undetermined coefficients and (b) variation of parameters.

$$
y^{\prime \prime}-2 y^{\prime}-3 y=x+2
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-2 y_{c}^{\prime}-3 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-2\left(r e^{r x}\right)-3\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r-3=0
$$

Solve for r.

$$
\begin{gathered}
(r-3)(r+1)=0 \\
r=\{-1,3\}
\end{gathered}
$$

Two solutions to the ODE are e^{-x} and $e^{3 x}$. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{-x}+C_{2} e^{3 x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}-3 y_{p}=x+2 \tag{2}
\end{equation*}
$$

Part (a)
Since the inhomogeneous term is a polynomial of degree 1, the particular solution is $y_{p}=A x+B$.

$$
y_{p}=A x+B \quad \rightarrow \quad y_{p}^{\prime}=A \quad \rightarrow \quad y_{p}^{\prime \prime}=0
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
& (0)-2(A)-3(A x+B)=x+2 \\
& (-2 A-3 B)+(-3 A) x=2+x
\end{aligned}
$$

Match the coefficients on both sides to get a system of equations for A and B.

$$
\left.\begin{array}{r}
-2 A-3 B=2 \\
-3 A=1
\end{array}\right\}
$$

Solving it yields

$$
A=-\frac{1}{3} \quad \text { and } \quad B=-\frac{4}{9}
$$

which means the particular solution is

$$
y_{p}=-\frac{1}{3} x-\frac{4}{9}
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{-x}+C_{2} e^{3 x}-\frac{1}{3} x-\frac{4}{9}
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

Part (b)

In order to obtain a particular solution, use the method of variation of parameters: Allow the parameters in the complementary solution to vary.

$$
y_{p}=C_{1}(x) e^{-x}+C_{2}(x) e^{3 x}
$$

Differentiate it with respect to x.

$$
y_{p}^{\prime}=C_{1}^{\prime}(x) e^{-x}+C_{2}^{\prime}(x) e^{3 x}-C_{1}(x) e^{-x}+3 C_{2}(x) e^{3 x}
$$

If we set

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{-x}+C_{2}^{\prime}(x) e^{3 x}=0 \tag{3}
\end{equation*}
$$

then

$$
y_{p}^{\prime}=-C_{1}(x) e^{-x}+3 C_{2}(x) e^{3 x}
$$

Differentiate it with respect to x once more.

$$
y_{p}^{\prime \prime}=-C_{1}^{\prime}(x) e^{-x}+3 C_{2}^{\prime}(x) e^{3 x}+C_{1}(x) e^{-x}+9 C_{2}(x) e^{3 x}
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
& {\left[-C_{1}^{\prime}(x) e^{-x}+3 C_{2}^{\prime}(x) e^{3 x}+C_{1}(x) e^{x}+\overline{9 C_{2}}(x) e^{3 x}\right]-2\left[-C_{1}(x) e^{-x}+\overline{3 C_{2}}(x) e^{3 x}\right] } \\
&-3\left[\underline{C_{1}(x)} e^{-x}+C_{2}(x) e^{3 x}\right]=x+2
\end{aligned}
$$

Simplify the result.

$$
\begin{equation*}
-C_{1}^{\prime}(x) e^{-x}+3 C_{2}^{\prime}(x) e^{3 x}=x+2 \tag{4}
\end{equation*}
$$

Add the respective sides of equations (3) and (4) to eliminate $C_{1}^{\prime}(x)$.

$$
4 C_{2}^{\prime}(x) e^{3 x}=x+2
$$

Solve for $C_{2}^{\prime}(x)$.

$$
C_{2}^{\prime}(x)=\frac{x}{4} e^{-3 x}+\frac{1}{2} e^{-3 x}
$$

Integrate this result to get $C_{2}(x)$, setting the integration constant to zero.

$$
\begin{aligned}
C_{2}(x) & =\int^{x} C_{2}^{\prime}(w) d w \\
& =\int^{x}\left(\frac{w}{4} e^{-3 w}+\frac{1}{2} e^{-3 w}\right) d w \\
& =\frac{1}{4} \int^{x} w e^{-3 w} d w+\frac{1}{2} \int^{x} e^{-3 w} d w \\
& =\left.\frac{1}{4} e^{-3 w}\left(-\frac{1}{9}-\frac{w}{3}\right)\right|^{x}-\left.\frac{1}{6} e^{-3 w}\right|^{x} \\
& =\frac{1}{4} e^{-3 x}\left(-\frac{1}{9}-\frac{x}{3}\right)-\frac{1}{6} e^{-3 x} \\
& =-\frac{1}{36} e^{-3 x}(7+3 x)
\end{aligned}
$$

Multiply both sides of equation (3) by -3 , and multiply both sides of equation (4) by 1 .

$$
\begin{array}{r}
-3 C_{1}^{\prime}(x) e^{-x}-3 C_{2}^{\prime}(x) e^{3 x}=0 \\
-C_{1}^{\prime}(x) e^{-x}+3 C_{2}^{\prime}(x) e^{3 x}=x+2
\end{array}
$$

Add the respective sides of these equations to eliminate $C_{2}^{\prime}(x)$.

$$
-4 C_{1}^{\prime}(x) e^{-x}=x+2
$$

Solve for $C_{1}^{\prime}(x)$.

$$
C_{1}^{\prime}(x)=-\frac{x}{4} e^{x}-\frac{1}{2} e^{x}
$$

Integrate this result to get $C_{1}(x)$, setting the integration constant to zero.

$$
\begin{aligned}
C_{1}(x) & =\int^{x} C_{1}^{\prime}(w) d w \\
& =\int^{x}\left(-\frac{w}{4} e^{w}-\frac{1}{2} e^{w}\right) d w \\
& =-\frac{1}{4} \int^{x} w e^{w}-\frac{1}{2} \int^{x} e^{w} d w \\
& =-\left.\frac{1}{4} e^{w}(-1+w)\right|^{x}-\left.\frac{1}{2} e^{w}\right|^{x} \\
& =-\frac{1}{4} e^{x}(-1+x)-\frac{1}{2} e^{x} \\
& =-\frac{1}{4} e^{x}(1+x)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y_{p} & =C_{1}(x) e^{-x}+C_{2}(x) e^{3 x} \\
& =\left[-\frac{1}{4} e^{x}(1+x)\right] e^{-x}+\left[-\frac{1}{36} e^{-3 x}(7+3 x)\right] e^{3 x} \\
& =-\frac{1}{4}(1+x)-\frac{1}{36}(7+3 x) \\
& =-\frac{x}{3}-\frac{4}{9}
\end{aligned}
$$

and the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{-x}+C_{2} e^{3 x}-\frac{1}{3} x-\frac{4}{9}
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

